
TURBULENT FLOW IN A CYLINDRICAL CHANNEL 

R. Kh. Ismagilov UDC 532.542.4 

The distribution function for turbulent frictional stress is proposed for flow in 
a cylindrical channel. Formulas are obtained for the calculation of the velocity 
distribution according to the well-known law of hydraulic drag of the channel. 

~r 

with the boundary condition 

Stabilized turbulent flow of liquid with a constant viscosity in a cylindrical channel 
is described by the equation 

I d [r(pu)' v ' ]= L ~ (r d-v~ 1 dP (1) 
dr R2r dr \ dr ) I dz 

a~ (o) = o. (2)  7,~_,i, = o. --&-- 

i t  is known [i] that the distribution of the turbulent tangential frictional stress qt = (pu)' v '  
must satisfy the conditions 

q t ( D = O ,  q , ( O ) = O .  

The distribution qt will be sought here in the form of the functim, 

q t =  . ~  rv, (3) 
2R 

satisfying the above conditions. Parameter T is determined from experimental data. Taking 
account of Eq. (3), Eq. (i) reduces to 

dzW dW 
x - -  + ( l - - x )  - - W =  O, ( 4 )  

dx z dx 

where 

R z dP Tr 2 
W = U ~ - - C ,  C =  - - ,  x =  - . 

~ l ~  dz 4 

The solution of Eq. (4) is [2] 

W = const e* 

Taking account of Eqs. (5) and (2), it follows that 

U = 1 I - - e x p x  x 
, X O  ~ , , 

1 -- exp xo 4 

C = x exp Xo 

1 - -  exp Xo 

Using the distribution in Eq. (6), it is found that 

dU --__ f (r) = ~:r exp x , 
dr 2 [ 1 -- exp Xo] 

2 { x o e x p x o  } 
y - ~  i" Urdr . . . .  -~ 1 . 

b z I -- exp x o 

Making use of the definition of Cf, it is possible to write 

CI = 2f (1) 
?Re 

(5) 

(6) 

(7) 

(8) 

(9) 

(lO) 
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Fig. i. Distribution of the relative tangential 
frictional stress: i) q; 2, 3) qt; 4, 5) ~M. Curves 
2, 4 and 3, 5 are calculated for T = i0 and 20, re- 
spectively. 

Fig. 2. Relative-velocity distribution. 

As is known, experimental data on Cf are generalized by the following relation 

Ct = ARe -m, (ii) 

where A and m are empirical constants. 

From Eqs. (i0) and (ii), an equation is found for determining the value of r from the 
specified number Re 

f(1) =__A Re'-" (12) 
? 2 

Thus, the solution obtained allows the profile of the velocity distribution and the 
frictional stress to be calculated with a known law of variation of the hydraulic drag of 
the channel. 

It is found from Eqs. (6)-(10) that 

l i m U =  1 - - r  2, l i m C = 4 ,  l i m [ ( 1 ) = - - 2 ,  l i m ? = 0 . 2 5 ,  
T~0 ~0 ~0 ~0 

i6 
lim Cj -- 
�9 ~0 R e  

Hence, in the particular case when T = 0, the given solution gives the well-known results 
for laminar liquid flow. 

The distribution of the relative values of the frictional stress is shown in Fig. i; 
these are the turbulent, molecular, and total values, given by the formulas 

- r f  (r) - ( 1 3 )  

2[(b [(t) 
As is evident, the total frictional stress in any conditions of flow increases linearly from 
zero to unity on moving toward the channel wall. This result precisely coincides with the 
well-known results of [I, 3]. It is also evident from Fig. 1 that, in turbulent flow condi- 
tions, the molecular friction is small in the central region of the channel, and the total 
frictional stress is mainly determined by the turbulent mixing of the liquid. With increase 
in r, turbulent friction increases, reaching a maximum in the peripheral region of the chan- 
nel, and then sharply declines in the wall layer to zero at r = i. The molecular friction 
rises monotonically on moving toward the channel wall, and the most rapid increase in ~M oc- 
curs in the wall layer of the flow, reaching a value of unity at r = i. 

The relative-velocity profiles at z = 0 and T = 20 are shown in Fig. 2, where the points 
correspond to calculation by a logar~thmic law and are taken from [i]. It is evident that, 
with increase in Re, the profile of v(r) becomes fuller and, as follows from Eqs. (5)-(8) and 
(14), ~(0) + ~c as Re + =. It is also evident that the relative-velocity profile calculated 
from Eq. (6) is in good agreement with the data of [i]. 
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Note that the logarithmic and power-law profiles of the velocity do not satisfy the 
physical condition d~/dr = 0 at r = 0 [i, 3]. This deficiency is eliminated here. 

Thus, the function in Eq. (3) leads to a result in agreement with the well-known laws 
of turbulent friction. 

NOTATION 

R, l, radius and length of the channel; r, z, cylindrical coordinates, referred to R 
and l, respectively; v, gas velocity; vo, gas velocity at the channel axis; U = v/vo; Cf, 
friction coefficient. 
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TWO-DIMENSIONAL FLOW OF VISCOUS FLUID BETWEEN CYLINDRICAL 

ROLLERS ROTATING IN OPPOSITE DIRECTIONS 

M. O. Izotov, G. M. Goncharov, 
and N. G. Bekin 

UDC 532.516 

A method of calculating the hydrodynamic parameters of two-dimensional flow of a 
viscous fluid through a channel formed by rotating cylinders is described. 

An important role in the reprocessing of polymer materials in rolling machines (cylin- 
ders, calenders) is played by the flow of the viscous fluid through the gap between oppositely 
rotating cylindrical rollers. The polymer between rollers is usually in the molten state, 
characterized by complex hydrodynamic effects which influence the quality of the end product. 
These effects include a "rotating stock" of material within the deformation zone, which ap- 
pears when the equipment is heavily loaded. In order to quantitatively estimate the flow 
characteristics under given technological conditions in a given equipment, it is necessary 
to mathematically describe the process and to construct an algorithm for calculating the dis- 
tribution of the velocity components at which particles of the material move through the de- 
formation zone as well as the integral characteristics related to this distribution. 

The flow region of the material is shown schematically in Fig. i. 

In order to describe the process theoretically, it is necessary to solve the complete 
system of two-dimensional Navier--Stokes equations with uniqueness conditions stipulated for 
the given curvilinear channel. 

It is well known that polymer materials are mostly nonlinearly viscous media and, there- 
fore, the Newton hypothesis of friction is inadequate for their description, which limits 
the practical use of the method which will be described here. We will nevertheless assume 
first that the material to be reprocessed is Newtonian fluid, the purpose being to simplify 
the development of this method of calculating a two-dimensional flow through a curvilinear 
channel and facilitating the test calculations. It will be assumed, furthermore, that the 
flow is steady and isothermal, also that the rate of material processing is held constant 
by the feeder band (Fig. la) moving around a roller until it enters the gap between rollers 
as a solid body at the same angular velocity. The flow region is bounded by the rollers on 
its left-hand and right-hand sides and by the exit coordinate from below, this coordinate 
being easily calculated from the given entrance coordinate by well-known methods such as 
those, for instance, which use the condition of constant material flow rate [i]. 
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